Cannabinoid receptors are coupled to nitric oxide release in invertebrate immunocytes, microglia, and human monocytes.

نویسندگان

  • G B Stefano
  • Y Liu
  • M S Goligorsky
چکیده

The present study demonstrates that stereoselective binding sites for anandamide, a naturally occurring cannabinoid substance, can be found in invertebrate immunocytes and microglia. The anandamide-binding site is monophasic and of high affinity, exhibiting a Kd of 34.3 nM with a Bmax of 441 fmol/mg protein. These sites are highly selective, as demonstrated by the inability of other types of signaling molecules to displace [3H]anandamide. Furthermore, this binding site is coupled to nitric oxide release in the invertebrate tissues examined as well as in human monocytes. Interestingly, the cannabinoid-stimulated release of nitric oxide initiates cell rounding. Thus, these cannabinoid actions resemble those of opiate alkaloids. In this regard, we demonstrate that these signaling systems use the same effector system, i.e. nitric oxide release, but separate receptors. Last, the presence of a cannabinoid receptor in selected evolutionary diverse organisms indicates that this signaling system has been conserved for more than 500 million years.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cyclic nitric oxide release by human granulocytes, and invertebrate ganglia and immunocytes: nano-technological enhancement of amperometric nitric oxide determination.

BACKGROUND Various tissues from vertebrates and invertebrates respond to external signal molecules by rapid release of nitric oxide (NO) mediated by constitutive nitric oxide synthase. MATERIAL/METHODS Invertebrate immunocytes were collected from maintained stock and human granulocytes were isolated from leukocyte-enriched blood obtained from the Long Island Blood Services. The invertebrate g...

متن کامل

Cannabinoid CB2 Receptor Mediates Nicotine-Induced Anti-Inflammation in N9 Microglial Cells Exposed to β Amyloid via Protein Kinase C

BACKGROUND Reducing β amyloid- (Aβ-) induced microglial activation is considered to be effective in treating Alzheimer's disease (AD). Nicotine attenuates Aβ-induced microglial activation; the mechanism, however, is still elusive. Microglia could be activated into classic activated state (M1 state) or alternative activated state (M2 state); the former is cytotoxic and the latter is neurotrophic...

متن کامل

AGE proteins as a causative factor in Alzheimer's Disease

The reaction between reducing sugars and protein free amines, known as the Maillar reaction results in the formation of advanced glycation endproducts (AGEs). AGE modification changes the structure of proteins to amyloid cross-beta structure. These protein structures can activate receptors known as RAGE on glial cells (microglia and astrocytes), and induce the expression of inducible nitric oxi...

متن کامل

Immunocytes modulate ganglionic nitric oxide release which later affects their activity level.

Pedal ganglia excised and maintained in culture for up to 2 h, release NO at low levels. The range can vary between 0 to 1.1 nM. Non-stimulated immunocytes do not significantly stimulate ganglionic NO release when incubated with pedal ganglia. However, ganglia exposed to immunocytes that had been previously activated by a 30 min incubation with interleukin 1 beta, release NO significantly above...

متن کامل

AGE proteins as a causative factor in Alzheimer's Disease

The reaction between reducing sugars and protein free amines, known as the Maillar reaction results in the formation of advanced glycation endproducts (AGEs). AGE modification changes the structure of proteins to amyloid cross-beta structure. These protein structures can activate receptors known as RAGE on glial cells (microglia and astrocytes), and induce the expression of inducible nitric oxi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 271 32  شماره 

صفحات  -

تاریخ انتشار 1996